آپلود ویدئو | ورود | ثبت نام


forwork nm-

Lecture 8 | Deep Learning Software


Embed گزارش تخلف

مشاهده 965

دریافت ویدئو: حجم کم کیفیت بالا
توسط forwork nm در 20 Dec 2017
توضیحات:

In Lecture 8 we discuss the use of different software packages for deep learning, focusing on TensorFlow and PyTorch. We also discuss some differences between CPUs and GPUs.

Keywords: CPU vs GPU, TensorFlow, Keras, Theano, Torch, PyTorch, Caffe, Caffe2, dynamic vs static computational graphs

Slides: http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture8.pdf

--------------------------------------------------------------------------------------

Convolutional Neural Networks for Visual Recognition

Instructors:
Fei-Fei Li: http://vision.stanford.edu/feifeili/
Justin Johnson: http://cs.stanford.edu/people/jcjohns/
Serena Yeung: http://ai.stanford.edu/~syyeung/

Computer Vision has become ubiquitous in our society, with applications in search, image understanding, apps, mapping, medicine, drones, and self-driving cars. Core to many of these applications are visual recognition tasks such as image classification, localization and detection. Recent developments in neural network (aka “deep learning”) approaches have greatly advanced the performance of these state-of-the-art visual recognition systems. This lecture collection is a deep dive into details of the deep learning architectures with a focus on learning end-to-end models for these tasks, particularly image classification. From this lecture collection, students will learn to implement, train and debug their own neural networks and gain a detailed understanding of cutting-edge research in computer vision.

Website:
http://cs231n.stanford.edu/

For additional learning opportunities please visit:
http://online.stanford.edu/

لغات کلیدی:

deep


comments powered by Disqus

درباره ما | تماس با ما | قوانین تخته سفید